Santos GLNG Coal Seam Water Monitoring and Management Plan Annual Report 2019

Executive Summary

Purpose

The Coal Seam Water Monitoring and Management Annual Report 2019 for the Santos GLNG Project, is required by the Commonwealth Department of Agriculture, Water and the Environment (DAWE).

This Annual Report:

- Has been prepared in accordance with Conditions 49 i) and 53 c)ix) of the Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) (EPBC Act) Approval 2008/4059;
- Reports progress against the Santos GLNG Stage 2 CSG Water Management and Monitoring Plan (Revision 2) (Stage 2 CWMMP Rev 2); and
- + Covers the period 1 January 2019 to 31 December 2019.

Approval Context

In October 2010, the Minister for the former Department of Sustainability, Environment, Water, Population and Communities (now DAWE) granted the EPBC Approval under the EPBC Act, with various conditions. Conditions included the submission of a Stage 1 and Stage 2 Coal Seam Gas Water Monitoring and Management Plan (CWMMP) in which Santos GLNG made commitments for addressing the EPBC Act Approval conditions. The Stage 1 CWMMP and Stage 2 CWMMP Rev 2 were approved by the Minister for the Environment on 29 November 2013.

Features of this Annual Report

Santos GLNG is progressing as planned against the commitments in the Stage 2 CWMMP Rev 2. The Santos GLNG project continues to be developed and operated in a sustainable manner, with the appropriate mitigation measures implemented. The potential risk of adverse impact to Matters of National Environmental Significance (MNES) remains low.

Table A provides a summary of Santos GLNG's commitments made for the period covered in the Stage 2 CWMMP Rev 2 and provides a status update of progress up to the end of December 2019.

Table A: Stage 2 CWMMP Rev 2 Commitments & Progress Update

● Commitment Complete; ► Commitment In Progress; ◆ Continuous Commitment

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status	Annual Report Reference
49a,	Groundwater Drawdown			
49d,53c.vi	Drawdown limits are now defined for the source aquifer at selected locations. These limits are subject to periodic updates.	Completed.	•	Section 3
	Installation of Early Warning Spring (EWS) monitoring network.	End 2016.		Section 3
	Ground truthing of a selection of springs to assess the presence of EPBC listed species and EPBC communities.	On and off tenure springs baseline initiated as part of the JIP, to be reported April 2015.	•	Section 3
	Santos GLNG will assume responsibility of mitigation (if required) for on-tenure springs and those off-tenement springs as will be assigned by the Surat Underground Water Impact Report (UWIR)/DOTE.	Ongoing.	٠	Section 3
	Comparison of drawdown to UWIR predictions will occur on a quarterly basis.	Quarterly.	•	Section 3

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status	Annual Report Reference			
49b, 53b,	Aquifer Connectivity						
53d(i)4)	Santos GLNG commits to provide further characterisation on the level of connectivity between the formations, including undertaking the following upcoming and ongoing hydraulic connectivity programs. Note that the results will be presented in future updates to the CWMMP.						
	Multi-level monitoring bores.	Ongoing monitoring and data assessment.	•	Section 4			
	Contact Zone Program.	Ongoing after installation.		Section 4			
	Wallumbilla Fault Program.	Installation planned for 2014.		Section 4			
	Aquifer Response.	Ongoing.	•	Section 4			
	Isotope and geochemical signature.	Ongoing.	•	Section 4			
	Pumping response observations and assessments.	Annually from 2014.	•	Section 4			
	The outcomes of the conventional oil and gas well and water bore risk assessment will be presented in an update to the CWMMP.	Updated CWMMP will be submitted for approval in due course.		Section 4			

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status	Annual Report Reference		
49c, 53a,	Aquifer Re-injection		-			
53 d)ii	Santos GLNG has completed its Managed Aquifer Recharge (MAR) pilot program and schedule for piloting of aquifer reinjection.					
	Fairview CSG Field Stage 1– Desktop Study.	Completed March 2012.	•	Section 5		
	Roma CSG Field Stage 1– Desktop Study.	Completed January 2011.	•	Section 5		
	Roma CSG Field Stage 2 – Investigations and Assessment.	Completed January 2011.	•	Section 5		
	Roma CSG Field pilot trial (Hermitage) Stage 3 – Construction and Commissioning.	Completed Q1/Q2 2012.	•	Section 5		
	Roma CSG Field pilot trial (Hermitage) Stage 4 – Operation.	Completed Q4 2012.	•	Section 5		
	Roma CSG Field (The Bend) Stage 3 – Construction and Commissioning.	Due for completion Q3 2014.	•	Section 5		
	Roma CSG Field (The Bend) Stage 4 – Operation.	Due to commence Q3/Q4 2014.	•	Section 5		
	Arcadia Valley CSG Field Stage 1 – Desktop Study.	Completed September 2013.	•	Section 5		
	All approved Injection Management Plans will be provided in an update to the CWMMP.	Ongoing.	•	Section 5		

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status	Annual Report Reference
49e	Hydraulic Fracturing			
	Santos GLNG will provide a projection of the anticipated number of wells to be hydraulically stimulated during each year as well as the number of hydraulic stimulations completed in the preceding year. Additional details to be reported will also include location information and the depth of each respective hydraulic stimulation.	Annually.	•	Section 6
49f	Santos GLNG agreed to undertake additional Direct Toxicity Assessment that include:	December 2013	•	Section 6
	 an ecotoxicological program, involving, for example, a comparison of (i) coal seam water, (ii) coal seam water with hydraulic fracturing chemicals, and (iii) hydraulic fracturing chemicals in freshwater; 			
	 assessing the risk of individual hydraulic fracturing chemicals of concern; and 			
	 assessing contribution of hydraulic fracturing chemicals to toxicity of hydraulic fracturing fluids and flowback waters (mixture toxicity). 			
	Santos GLNG is committed to undertaking these assessments, as part of the joint industry Ecotoxicity Work Program; the result of which will be provided to the DAWE upon completion.			

Condition Annual Report **Target Completion Date Specified in** Commitment Status Stage 2 CWMMP Rev 2 Reference 49.g.iv) **Surface Water Baseline** Ongoing collection of surface water baseline data. End of 2014. Section 2 Initial conceptual models to be provided EPBC spring hydrogeological conceptual model. Section 3 in November 2013. Atmospheric pressure monitoring - 1 installation (baro-logger or Completed. Section 3 other) at each EPBC spring complex or cluster of spring complexes. **Surface Water Threshold Values** 49.g.vi) Collection and reviewing 2 years of baseline data and development End of 2014. Section 7 of upper and lower confidence levels (Threshold values) for key Completed, data acquisition ongoing. parameters (relevant to MNES). These threshold values will be provided in an update to the CWMMP. 49.g.x) **Brine Management Plans** Provision of Brine Management Plans developed for Arcadia Valley, December 2014. Section 8 Roma and Fairview gas fields as a state government requirement within the respective gas field's environmental authorities (EA's). These will be provided in the next update to the CWMMP.

Commitment Complete; Commitment In Progress; Continuous Commitment

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status	Annual Report Reference
49i, 53c)ix)	Reporting			
	A Coal Seam Water Monitoring and Management Annual Report will be developed for each calendar year and submitted to the DAWE within the first quarter of the following year.	31 March 2017 and annually thereafter.	•	Section 10
	Digital data can be provided to the DAWE on request.	Ongoing.	•	Section 10
	Santos GLNG will publish the following reports on the internet (via the Santos Water Portal):	Annually	•	Section 10
	 Coal Seam Water Monitoring and Management Annual Report; and 			
	 Link to the latest Surat Cumulative Management Area (CMA) Underground Water Impact Report (UWIR). 			
	Santos GLNG will regularly publish data from the water monitoring network on the Santos Water Portal.	Ongoing	•	Section 10
55	The next revision of the CWMMP is currently planned to be submitted to the DAWE 6 months after next revision of the UWIR.	Report to be submitted 3 months prior to first LNG cargo		Section 10

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status	Annual Report Reference
53.c)iv)	Groundwater Baseline		-	· ·
	Groundwater baseline data collection completion.	End of 2014.	•	Section 2
	Santos GLNG, in collaboration with the other Proponents (APLNG and QGC), will by the end of 2013 develop a statistical methodology to enable definition of significant exceedances from the baseline water pressure and water quality levels. The establishment of this methodology can only reasonably be commenced once the three Projects all have sufficient confirmation of their EPBC conditions being met by the respective CWMMPs.	Completed.	•	Section 3
53.d.i.III	Subsidence			
	The Subsidence Management Plan provides a response plan into exceedance of the defined subsidence trigger. The Subsidence Management Plan describes the monitoring undertaken to establish variation of ground level over time.	Completed.	•	Section 9
	Subsidence baseline.	Completed.	•	Section 9
	Monitoring through satellite measurements.	Ongoing.	•	Section 9

Commitment Complete; Commitment In Progress; Continuous Commitment

Table of Contents

1.0	Introd	luction	1
	1.1	Scope of the Annual Report	1
	1.2	Project Context	1
2.0	Surfac	e Water and Groundwater Baseline Monitoring	3
	2.1	Overview	3
	2.2	Coal Seam Water Monitoring and Management Plan Commitments	3
	2.3	Surface Water Baseline Monitoring	5
	2.4	Baseline for Regional Groundwater Pressure and Quality	5
	2.5	Baseline for Springs and Wetlands	5
3.0	EPBC	Springs	7
	3.1	Overview	7
	3.2	Coal Seam Water Monitoring and Management Plan Commitments	7
	3.3	EPBC Springs Monitoring Progress	9
	3.3.1	Progress on the EPBC Springs Early Warning System Implementation	9
	3.3.2	Spring Baseline Acquisition	10
	3.4	EPBC Spring Hydrogeological Conceptual Models	10
	3.5	Assessment of Trends for Analysis of Groundwater Data	10
	3.5.1	Yebna 2 Spring Complex	10
	3.5.2	Abyss / Lucky Last Spring Complexes	11
	3.5.3	Cockatoo Creek Spring Complexes	12
4.0	Aquife	r Connectivity	16
	4.1	Overview	16
	4.2	Coal Seam Water Monitoring and Management Plan Commitments	16
	4.3	Multi-level monitoring	17
	4.4	Contact Zone near the Fairview Field	17
	4.5	Hutton-Wallumbilla Fault	18
	4.6	Aquifer Response to Depressurisation	19
	4.7	Isotope and Geochemical Signature	19
	4.8	Pumping Response to Depressurisation	19
	4.9	Support of OGIA Research	19
5.0	Manag	ed Aquifer Recharge	21

	5.1	Overview	. 21
	5.2	Coal Seam Water Monitoring and Management Plan Commitments	. 21
	5.3	Status of Feasibility and Regulatory Approval	. 22
6.0	Hydrau	lic Fracturing	. 23
	6.1	Overview	. 23
	6.2	Coal Seam Water Monitoring and Management Plan Commitments	. 23
	6.3	Hydraulic Fracturing in 2019	. 24
	6.4	Direct Toxicity Assessment	. 27
7.0	Surfac	e Water Monitoring	. 28
	7.1	Overview	. 28
	7.2	Coal Seam Water Monitoring and Management Plan Commitments	. 28
	7.3	Surface Water Threshold Values	. 28
8.0	Brine M	lanagement	. 29
	8.1	Overview	. 29
	8.2	Coal Seam Water Monitoring and Management Plan Commitments	. 29
	8.3	Brine Management Progress	. 29
9.0		Brine Management Progress	
9.0			. 31
9.0	Subsid	ence	31 31
9.0	Subsid 9.1	ence	31 31 31
9.0	Subsid 9.1 9.2	ence Overview Coal Seam Water Monitoring and Management Plan Commitments	31 31 31 31
	Subsid 9.1 9.2 9.3 9.4	ence Overview Coal Seam Water Monitoring and Management Plan Commitments Findings to Date	31 31 31 31 32
	Subsid 9.1 9.2 9.3 9.4	ence Overview Coal Seam Water Monitoring and Management Plan Commitments Findings to Date Ongoing Studies and Monitoring	31 31 31 31 32 33
	Subsid 9.1 9.2 9.3 9.4 Report	ence Overview Coal Seam Water Monitoring and Management Plan Commitments Findings to Date Ongoing Studies and Monitoring	31 31 31 32 33 33
	Subsid 9.1 9.2 9.3 9.4 Report 10.1	ence Overview Coal Seam Water Monitoring and Management Plan Commitments Findings to Date Ongoing Studies and Monitoring ing Overview	31 31 31 32 33 33 33
	Subsid 9.1 9.2 9.3 9.4 Report 10.1 10.2	ence Overview Coal Seam Water Monitoring and Management Plan Commitments Findings to Date Ongoing Studies and Monitoring ing Overview Coal Seam Water Monitoring and Management Plan Commitments	31 31 31 32 33 33 33 34
	Subsid 9.1 9.2 9.3 9.4 Report 10.1 10.2 10.3	ence Overview Coal Seam Water Monitoring and Management Plan Commitments Findings to Date Ongoing Studies and Monitoring ing Overview Coal Seam Water Monitoring and Management Plan Commitments 2019 Reporting	31 31 31 31 32 33 33 34 34
	Subsid 9.1 9.2 9.3 9.4 Report 10.1 10.2 10.3 10.3.1	ence	31 31 31 32 33 33 33 34 34 34
	Subsid 9.1 9.2 9.3 9.4 Report 10.1 10.2 10.3 10.3.1 10.3.2	ence	31 31 31 32 33 33 33 34 34 34 34

Tables

Table A: Stage 2 CWMMP Rev 2 Commitments & Progress Update	. 2
Table 2-1: Stage 2 CWMMP Rev 2 Commitments – Surface Water and Groundwater Baseline Monitoring	j 4
Table 2-2: Summary of Regional Groundwater Level Monitoring Points Active Year End 2019	. 6
Table 2-3: Summary of the Number of Regional Groundwater Quality Monitoring Sampling Points in 2019	96
Table 3-1: Stage 2 CWMMP Rev 2 Commitments – EPBC Springs	. 7
Table 3-2: Progress on EPBC Springs Early Warning System Monitoring Implementation	. 9
Table 4-1: Stage 2 CWMMP Rev 2 Commitments – Aquifer Connectivity	16
Table 4-2: Number of Active Multi-level Groundwater Level Monitoring Installations	17
Table 4-3: Status of Groundwater Level Monitoring Installations Investigating the Contact Zone in Fairvie	
Table 5-1: Stage 2 CWMMP Rev 2 Commitments – MAR	21
Table 6-1: Stage 2 CWMMP Rev 2 Commitments – Hydraulic Fracturing	23
Table 6-2: Hydraulic Fracturing Locations and Perforation Details Completed in 2019	25
Table 7-1: Stage 2 CWMMP Rev 2 Commitments – Surface Water Monitoring	28
Table 8-1: Stage 2 CWMMP Rev 2 Commitments – Brine Management	29
Table 9-1: Stage 2 CWMMP Rev 2 Commitments – Subsidence	31
Table 10-1: Stage 2 CWMMP Rev 2 Commitments – Reporting	33

Figures

Figure 1-1: Santos GLNG Project Area	2
Figure 3-1: Yebna 2 EWS Groundwater Pressure Data at MW0902 and SBNGWP01	. 14
Figure 3-2: Abyss and Lucky Last EWS Groundwater Pressure Data at MHTGWP01 and MHTGWH01	. 14
Figure 3-3: Abyss and Lucky Last EWS Groundwater Pressure Data at MNHGWP02	. 14
Figure 3-4: Abyss and Lucky Last EWS Groundwater Pressure Data at OKSGWP01	. 15
Figure 3-5: Cockatoo Creek Spring Complex EWS Groundwater Pressure Data	. 15

1.0 Introduction

1.1 Scope of the Annual Report

The Santos Gladstone Liquefied Natural Gas (GLNG) Coal Seam Water Monitoring and Management Annual Report 2019 (Annual Report) has been prepared in accordance with Condition 49 i) and 53 c)ix) of the *Environmental Protection and Biodiversity Conservation Act 1999* (EPBC Act) Approval 2008/4059 (EPBC Approval). This Annual Report provides progress against commitments made in the Santos GLNG Stage 2 Coal Seam Gas Water Management and Monitoring Plan (Revision 2) (Stage 2 CWMMP Rev 2) for the period 1 January 2019 to 31 December 2019.

Annual Reports are to be submitted to the Department of Environment and Energy (DAWE) by 31 March of each calendar year. The purpose of this annual report is to:

- + Document the progress against each commitment summarised in Table-A from 1 January 2019 to 31 December 2019; and
- + Provide commentary on findings from completed work.

The report has been structured to present progress on commitments under the following headings:

- + Section 1 Introduction;
- + Section 2 Surface Water and Groundwater Baseline Monitoring;
- + Section 3 EPBC Springs;
- + Section 4 Aquifer Connectivity;
- + Section 5 Managed Aquifer Recharge;
- + Section 6 Hydraulic Fracturing;
- + Section 7 Surface Water Monitoring;
- + Section 8 Brine Management;
- + Section 9 Subsidence;
- + Section 10 Reporting; and
- + Section 11 Third Party Audit

1.2 Project Context

In May 2010, the Queensland Coordinator-General approved the project under the *State Development and Public Works Organisation Act 1971*. In October 2010, the Minister for the former Department of Sustainability, Environment, Water, Population and Communities (now the Department of Agriculture, Water and Environment (DAWE) granted approval under the EPBC Act. The GLNG project area location is shown in Figure 1-1.

The EPBC Act provides a legal framework to protect and manage nationally and internationally important flora, fauna, ecological communities and heritage places — defined in the EPBC Act as Matters of National Environmental Significance (MNES). Accordingly, the CWMMP has been developed to manage the risk of adverse impact to MNES with regard to coal seam water management as part of the Santos GLNG Project.

Santos GLNG prepared a Stage 1 and Stage 2 CWMMP within the specified timeframes to meet the requirements of EPBA Act approval conditions. The Stage 1 CWMMP and Stage 2 CWMMP Rev 2 were approved by the Minister for the Environment on 29 November 2013. The Stage 2 CWMMP Rev 2 fulfils the requirements of Conditions 49, 52 and 53.

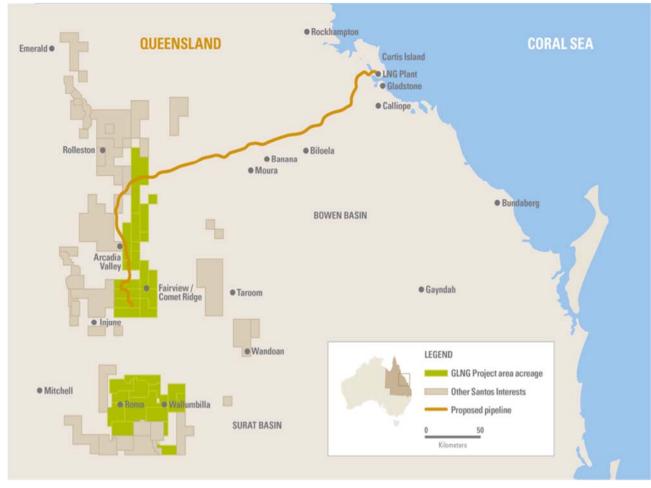


Figure 1-1: Santos GLNG Project Area

2.0 Surface Water and Groundwater Baseline Monitoring2.1 Overview

Baseline surface water and groundwater data is information which establishes attributes of the water environment prior to the onset of development. This information can be used for comparison in the future to establish if changes have occurred. It may also be possible, dependent upon the nature of the change, to utilise baseline in order to establish a cause, i.e. being potentially related to development activities or not. In relation to MNES, baseline data may also be useful in determining meaningful targets for impact mitigation and management controls.

The water quality baseline data that has been collected over many years, comprises:

- + Baseline for surface water quantity and quality;
- + Baseline for groundwater pressure and quality; and
- + Baseline for springs and wetlands.

The period of data collection that may be required to establish baseline will be location specific, and depend upon the nature of the environment being monitored. This is the case where ambient groundwater conditions are inter- and intra-seasonally dynamic, and affected by a number of interdependent variables such as rainfall, evapotranspiration potential, localised and regional groundwater abstraction activity, land-use changes and more.

Groundwater monitoring may be ongoing throughout the life of Santos GLNG development. It is expected that in most instances, monitoring will continue to gather data many years in advance of potential discernible changes that may be linked to CSG production activities, and until such time the data could be considered to contribute to the baseline data set. The need for and extent of ongoing monitoring, however, is dictated by the need to monitor and manage the risk of adverse impact to MNES. Groundwater monitoring proposed in respect of such risks, is described in more detail in the relevant chapters (Chapter 3 – EPBC Springs, Chapter 4 - Aquifer Connectivity and Chapter 5 - Managed Aquifer Recharge).

2.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-1 provides an outline of the commitments made in the Stage 2 CWMMP Rev 2 specific to surface water and groundwater baseline monitoring and progress against each commitment.

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status
53.c)iv)	Groundwater Baseline		
	Groundwater baseline data collection completion.	End of 2014.	Completed. Data acquisition ongoing.
49.g.iv)	Surface Water Baseline	-	
	Ongoing collection of surface water baseline data.	End of 2013.	Completed. Data acquisition ongoing.

Table 2-1: Stage 2 CWMMP Rev 2 Commitments – Surface Water and Groundwater Baseline Monitoring

2.3 Surface Water Baseline Monitoring

Surface water monitoring has been ongoing since 2003. Monitoring increased significantly in 2009-2012 and included a number of perennial, ephemeral and spring sampling locations across the Roma, Fairview and Arcadia Valley gas fields. A total of 22 grab samples were collected in 2019 from perennial sampling points in the Dawson River in Fairview. A further 40 samples were taken from a waterhole adjacent to the Dawson River in Fairview.

Surface water baseline monitoring requirements have been met for both Fairview and Roma fields and associated surface water threshold values have been calculated.

2.4 Baseline for Regional Groundwater Pressure and Quality

Santos GLNG has implemented a program for the regional groundwater level monitoring of private bores, dedicated groundwater monitoring bores and multi-level monitoring installations (such as vibrating wire piezometers (VWPs)) since 2008. The groundwater level monitoring network extends across Santos GLNG tenures and across all relevant aquifers. A summary of the currently active water level monitoring points and the cumulative number of bores were active by the end 2019 are summarised in Table 2-2.

Details of the groundwater quality monitoring program undertaken during 2019 are provided below. The summary includes groundwater quality samples taken from dedicated monitoring bores across Roma, Fairview and Arcadia Valley gas fields. Table 2-3 provides a summary of the number of currently active water quality monitoring points.

From January 2019 to December 2019, a total of 35 samples have been collected as part of the groundwater quality monitoring program.

- + 19 samples from the Roma field;
- + 14 samples from the Fairview field; and
- + 2 samples for the Arcadia Valley field.

2.5 Baseline for Springs and Wetlands

Baseline conditions at EPBC-listed and non EPBC-listed springs have been established by the Office of Groundwater Impact Assessment (OGIA) on behalf of the CSG industry and are presented within reports by KCB (2012) and Queensland Herbarium (2012), outlined in the Surat Cumulative Management Area (CMA) Underground Water Impact Report (UWIR 2012, UWIR 2016 and UWIR 2019).

In addition to this baseline, Santos GLNG has initiated spring monitoring as required under the Surat UWIR and Santos GLNG approval conditions on Santos GLNG tenures. A joint industry spring baseline program was implemented consisted of quarterly monitoring events and inclusive of ecological and hydrogeological parameters monitoring. The findings of this monitoring is provided by Jacobs (2015) as has not been developed further. An update and forward work program will be provided in the next revision of the CWMMP.

Formation	Private Water Bores	GLNG Multi- level Monitoring Points	GLNG Dedicated Monitoring Bores	Total
Alluvium	2	-	-	2
Volcanics	1	-	-	1
Bungil Formation	2	-	1	3
Mooga Sandstone	6	10	3	19
Orallo Formation	7	3	4	14
Gubberamunda Sandstone	7	18	13	38
Westbourne Formation	-	10	-	10
Springbok Sandstone	-	7	4	11
Walloon Coal Measures (WCM, targeting various seams)	1	48	2	51
Eurombah Formation	-	3		3
Hutton Sandstone	2	5	3	10
Evergreen Formation	1	2	-	3
Boxvale Sandstone	-	-	-	-
Precipice Sandstone	4	5	18	27
Clematis Sandstone	2	-	2	4
Rewan Formation	1	-	-	1
Bandanna Formation	-	8	4	12
Unknown*	3	-	-	3
TOTAL	39	119	54	212

Table 2-2: Summary of Regional Groundwater Level Monitoring Points Active Year End 2019

Notes: These numbers may differ from those in the 2018 Annual Report due to ongoing refinement of the monitoring network. - no bores present.

* unknown indicates that the aquifer is to be confirmed through ongoing assessment.

Data source: Santos GLNG (as of December 2019).

Table 2-3: Summary of the Number of Regional Groundwater Quality Monitoring Sampling Points in 2019

Formation	Number of sampling events
Mooga Sandstone	4
Orallo Formation	3
Gubberamunda Sandstone	9
Springbok Sandstone	1
Hutton Sandstone	4
Precipice Sandstone	18
Clematis Sandstone	2
TOTAL	42
Notes:	•

Data source: Santos GLNG (as of December 2019).

3.0 EPBC Springs

3.1 Overview

Groundwater drawdown propagating from natural gas production has the potential to impact springs hosting ecological communities that are listed as MNES under the EPBC Act, or springs that are sourced from confined aquifers of the Great Artesian Basin (GAB). These are known as "EPBC Springs".

CSG operators in the southern Bowen and Surat Basins have developed a Joint Industry Plan (JIP) for a groundwater monitoring and management system to ensure EPBC Springs are not adversely impacted by groundwater drawdown associated with gas production.

The methodology for monitoring and management of EPBC Springs is defined in the JIP, which was approved by the Minister for the Environment in November 2013 and provided as an appendix to the Santos GLNG Stage 2 CWMMP Rev 2.

3.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-4 provides an outline of Santos GLNG's commitments presented in the Stage 2 CWMMP Rev 2, specific to EBPC Springs and progress against each commitment.

Condition	Commitment	Target Completion Date Specified in the Stage 2 CWMMP Rev 2	Status
49a, 49d,53c.vi	Drawdown limits are now defined for the source aquifer at selected locations. These limits are subject to periodic updates.	Completed.	Completed (2013).
	Installation of Early Warning Spring (EWS) monitoring network.	End 2016.	Ongoing (see Table 3-2).
	Ground truthing of a selection of springs to assess the presence of EPBC listed species and EPBC communities.	On and off tenure springs baseline initiated as part of the (JIP), to be reported in April 2015.	Completed (2015).
	Santos GLNG will assume responsibility of mitigation (if required) for on-tenure springs and those off- tenement springs as will be assigned by the Surat Underground Water Impact Report (UWIR)/DAWE.	Ongoing.	Ongoing.

Table 2-4: Stage 2 CWMMP Rev 2 Commitments – EPBC Springs

Condition	Commitment	Target Completion Date Specified in the Stage 2 CWMMP Rev 2	Status
	Comparison of drawdown to UWIR predictions will occur on a quarterly basis - Graphic comparisons will be provided in the Santos GLNG Annual Report for Early Warning System bores that Santos GLNG is responsible for.	Quarterly.	The methodology has evolved – once groundwater level reference values are defined, Santos GLNG is assessing the feasibility of programming a system of alerts in the database. Until then, three monthly data checks will be completed.
49.g.iv)	EPBC spring hydrogeological conceptual model.	Initial conceptual models to be provided in November 2013. Additional conceptual models will be provided at completion of spring baseline assessment (April 2015).	Completed April 2015.
	Atmospheric pressure monitoring – 1 installation (baro-logger or other) at each EPBC Spring complex or cluster of spring complexes.	Completed.	Completed for on- tenure EPBC springs 2013.
53.c)iv)	Santos GLNG, in collaboration with the other Proponents (APLNG and QGC), will by the end of 2013 develop a statistical methodology to enable definition of significant exceedances from the baseline water pressure and water quality levels. The establishment of this methodology can only reasonably be commenced once the three Projects all have sufficient confirmation of their EPBC conditions being met by the respective CWMMPs.	Completed.	Ongoing. The JIP provided a statistical methodology for groundwater level trend analysis that has not yet been implemented in practice.

3.3 EPBC Springs Monitoring Progress

Details of activities undertaken during 2019 are summarised in the following sections.

3.3.1 Progress on the EPBC Springs Early Warning System Implementation

The potential risk of impact on EPBC Springs continue to be monitored through a network of groundwater monitoring bores, providing early warning of potential impact propagating from the gas production towards the EPBC Spring in the source aquifer. The JIP defines the responsibilities for the implementation and monitoring of the groundwater monitoring bores.

There are 12 groundwater level monitoring installations which fall under Santos GLNG responsibility within the JIP, of which 10 are operational one is no longer required and one is will be reviewed at the next revision of the CWMMP. One monitoring point is not required since there is no groundwater present. A summary status is provided in Table 2-5.

Bore	Lat. (WGS84)	Long. (WGS84)	Aquifer	EPBC Spring	Date Water Level Monitoring Commenced	Status
OKSGWP01	-25.8098	148.8276	Precipice Sandstone	Abyss, Lucky Last	December 2016	Active
MHTGWH01	-25.8250	148.7916	Hutton Sandstone	Abyss	Nov 2014	Active
MHTGWP01	-25.8250	148.7916	Precipice Sandstone	Lucky Last	Dec 2013	Active
MNHGWP02*	-25.7881	148.9233	Precipice Sandstone	Abyss, Lucky Last	Aug 2015	Active
AVLOP01	-25.9419	150.0742	Precipice Sandstone	Cockatoo Creek	Dec 2015	Active
AVLGWH	-25.9141	150.0736	Hutton Sandstone	Cockatoo Creek	Dec 2013	Active
AVLVWH1 AVLVWH2	-25.9379	150.0739	Hutton Sandstone	Cockatoo Creek	Dec 2012	Active
AVLVWP1 AVLVWP2	-25.9379	150.0739	Precipice Sandstone	Cockatoo Creek	Dec 2012	Active
EWMI7	-24.6074	149.0761	Clematis Sandstone	Elgin 2	-	To be reviewed at the next revision of the CWMMP
SBNGWH01	-25.8263	149.0370	Hutton Sandstone	Yebna 2	-	No groundwater present
SBNGWP01	-25.8263	149.0370	Precipice Sandstone	Yebna 2	Nov 2014	Active
MW0902	-25.7347	149.0829	Precipice Sandstone	Yebna 2	Jan 2011	Active

Notes: * MNHGWP02 replaces MW0905 as originally specified in the JIP.

3.3.2 Spring Baseline Acquisition

The Industry has delivered quarterly spring baseline surveys throughout 2015. Surveys were conducted in 2016 in accordance with the requirements of the Spring Impact Monitoring Strategy outlined in the UWIR for the Surat CMA.

3.4 EPBC Spring Hydrogeological Conceptual Models

Using information collected during the baseline monitoring and additional research conducted both by the OGIA and by GLNG, the OGIA prepared conceptualisation reports for the EPBC listed spring sites. These conceptualisation reports were submitted to the DAWE in a letter from the OGIA dated 30th April 2015.

Re-conceptualisation of spring hydrogeology is proposed to be reported in the next revision to the CWMMP.

3.5 Assessment of Trends for Analysis of Groundwater Data

No apparent common or generalised upward or downward trends have been identified across the periods for which monitoring data has been collected. Most trends appear to be seasonal, with seasonal (i.e. intra-annual) groundwater pressure variations being less than inter-annual variations.

A statistical methodology is being defined which can objectively define the meaningful threshold values against which the significance of groundwater pressure variations can be assessed against baseline water pressures. It is predicted that several years of data collection before baseline values and threshold trigger values for a change to groundwater pressures at an Early Warning Spring (EWS) can be objectively determined.

The following sections present a summary of the observed groundwater level trends data collected to date. The 2019 Underground Water Impact Report (UWIR) for the Surat Cumulative Management Ares (CMA) also presents regional trend analysis for some water monitoring locations within the Surat CMA.

3.5.1 Yebna 2 Spring Complex

MW0902 and SBNGWP01 are EWS bores for the Yebna 2 EPBC spring complex. Groundwater pressure data for these bores is displayed graphically in Figure 3-1.

MW0902 has been monitoring the Precipice Sandstone since January 2011 and has shown a general upward trend in groundwater level since Q4 in 2012. The groundwater level has increased by approximately 1 metre (m) through 2015, therefore at a rate of approximately 1 m increase per year. The short-term variation of the longer-term groundwater level trend (i.e. the short-term 'noise') has range of up to around 0.5 m. Since the beginning of 2017, the groundwater level has stabilised and trended slightly downward by about 1m through the last two years.

SBNGWP01 has been monitoring the Precipice Sandstone since December 2014 and has shown a general upward trend in groundwater level since that time. The groundwater level

has increased by approximately 1 metre (m) through 2015, therefore at a rate of approximately 1 m increase per year. In 2016 the groundwater level increased by approximately 0.5m. The upward trend seen in 2016 continued through the first quarter of 2017. The second half of 2017 saw a slightly decreasing water level trend of around 0.2m over around 6 months. In 2018 it decreased by a further 0.5m. The short-term variation of the longer term groundwater level trend (i.e. the short-term 'noise') has range of up to around 0.25 m.

The variations in groundwater level may relate to factors such as APLNG's groundwater reinjection scheme commencing 2015 and dryer than average conditions experienced across the region since 2017. The generally stable to slightly upward trending groundwater levels are consistent with water level trend analysis for the Precipice Sandstone in the same region, reported in the 2019 UWIR for the Surat CMA.

3.5.2 Abyss / Lucky Last Spring Complexes

MHTGWP01, MHTGWH01, MNHGWP02 and OKSGWP01 are EWS bores for the Abyss and Lucky Last EPBC spring complexes. Groundwater pressure data for these bores is displayed graphically in Figure 3-2, Figure 3-3 and Figure 3-4.

MHTGWP01 has been monitoring the Precipice Sandstone since December 2013, and is located more than 10 km west of any active gas field development. It generally shows a stable trend. From 2014, groundwater pressures vary by up to around 0.1 m approximately monthly, and up to around 0.5 m over an approximately annual cycle.

MHTGWH01 has been monitoring the Hutton Sandstone since November 2014, and is located more than 10 km west of any active gas field development. It generally shows a stable trend since monitoring commenced. Throughout this period, groundwater pressures vary up to around 0.2m in approximately fortnightly cycles.

MNHGWP02 has been monitoring the Precipice Sandstone since August 2015, and is also located more than 10 km west of any active gas field development. It generally shows a stable trend since monitoring commenced up to the first quarter of 2017. Groundwater pressures vary by up to around 0.3 m over fortnightly cycles. Since the start of 2018 groundwater pressures have declined by about 0.7m.

OKSGWP01 has been monitoring the Precipice Sandstone since mid-December 2016. The monitoring bore is located approximately 3km west of active CSG wells, on the unconformable contact zone between the Precipice Sandstone and the underlying Bandanna Formation. Initial data over the first 6 month show an exponential decay pattern of declining groundwater level. Groundwater levels in the bore for the remainder of 2017 and into the first half of 2018 show a water level decline of about 0.5 m/year. The initial exponential decay pattern suggests the monitoring bore is poorly connected to the Precipice Sandstone, and that the bore was initially over pressurised with drilling/workover fluids and is slowly returning to ambient groundwater pressure. This was verified in June 2018, which is indicated by a pressure spike as a slug test was performed. As a result, the bore was worked over in February 2019 to improve the connectivity of the monitoring with the adjacent

formation. Since that time, water level trend appears stable, although the absolute value needs to be validated and rectified to a reference value.

The generally stable trend in groundwater levels are consistent with water level trend analysis for the Precipice Sandstone and Hutton Sandstone in the same region, reported in the 2019 UWIR for the Surat CMA.

3.5.3 Cockatoo Creek Spring Complexes

AVLGWH01, AVLVWH1, AVLVWH2, AVLVWP1 and AVLVWP2 are EWS bores for the Cockatoo Creek Spring Complex. Groundwater pressure data for these bores is displayed graphically in Figure 2-5. The generally stable trends in groundwater levels are consistent with water level trend analysis for the Precipice Sandstone and Hutton Sandstone in the same region, reported in the 2019 UWIR for the Surat CMA.

AVLGWH01

AVLGWH01 has been monitoring the Hutton Sandstone since January 2013, and is located more than 30 km north of Santos GLNG gas field development areas. AVLGWH01 is a landholder bore that is an active water extraction bore.

The observed groundwater pressures in the bore generally show a downward trend since the record began in January 2013. Throughout 2013 the rate of decline was approximately 0.2 m/year, in 2014 the rate of decline was approximately 0.7 m/year and appears to be related to a period of intense extraction from the bore. Since 2015, extraction appears to have ceased, and groundwater levels stabilised and have trended upward at a rate of about 0.5 m/year.

AVLVWH1/ AVLVWH2

AVLVWH1 and AVLVWH2 are monitoring points located within the same Vibrating Wire Piezometer (VWP) monitoring location. The two monitoring points are monitoring different depths in the Hutton Sandstone, with H1 being at 155 mbgl and H2 at 250 mbgl. The deeper monitoring point is stratigraphically closer to the Bandanna Formation, which is the formation targeted by CSG wells operated by Santos which are stratigraphically closest the monitoring location. The site went down in Q3 2017 and was being investigated for rectification throughout the following year. The site came back online at the end of 2018.

The VWP has been monitoring the Hutton Sandstone since December 2012. The two monitoring depths show different groundwater level trends.

+ H1 (the shallowest) shows a general downward trend in groundwater level since records began. The groundwater level has decreased by approximately 5 m from December 2012 to May 2014. Since May 2014, water levels appeared to have stabilised at approximately 247 mAHD, and increased from around May 2015. Throughout 2016, groundwater pressures decline by around a metre. This pattern continues throughout 2017. Groundwater levels vary around the longer-term average water level by up to around 4 m. By the time the sensor comes back online at the end on 2018, the groundwater level trend appears to have stabilised.

+ H2 (the deeper) shows a period of increasing groundwater levels from December 2012 to June 2013 (13 m increase), prior to demonstrating a period of decline from June 2013 to April 2015 (~13m). It fluctuates heavily throughout the remainder of 2015 though appears to be trending upward. 2016 shows a general decline of around 3 m that appears to stabilise in the final quarter. This stable trend is generally reflected throughout 2017, albeit the data does fluctuate by around 5m over less than monthly cycles. By the time the sensor comes back online at the end on 2018, the groundwater level appears to be trending downward by about 2.5 m/year. This cannot be a result of CSG activity, since the intervening aquifer (the Precipice Sandstone) does not show worse declining level trends. The downward pressure trend is likely due to local and regional abstraction by other groundwater users in the same formation.

AVLVWP1/AVLVWP2

AVLVWP1 and AVLVWP2 are monitoring points located within the same VWP monitoring location. The two monitoring points are monitoring different depths in the Precipice Sandstone, with P1 being at 490 mbgl and P2 at 528 mbgl. The deeper monitoring point is stratigraphically closer to the Bandanna Formation, which is the formation targeted by CSG wells operated by Santos which are closest the monitoring location. The site went down in Q3 2017 and was being investigated for rectification throughout the following year. The site came back online at the end of 2018.

The VWP has been monitoring the Precipice Sandstone since December 2012. The two monitoring depths show different groundwater level trends.

- + P1 (the shallowest) shows a general upward trend in groundwater levels, with a decline in 2015, and general increase throughout 2016 and 2017. Generally the data from this monitoring sensor looks unreliable due to the huge variation observed. The groundwater level has increased by approximately 12 m from December 2012 to December 2014, approximately 6 m/year. In August 2015, groundwater levels dropped rapidly by around 15 m and appear broadly stable throughout the rest of 2015. In 2016 groundwater levels increased by around 5 m. In 2017, groundwater levels jumped another 25 metres. Within any single year, the groundwater level may vary by up to around 10 m around longer term trends. By the time the sensor comes back online at the end on 2018, the groundwater level trend is sharply downward trending but is not lower than recorded in 2012-2016.
- + P2 (the deeper, and therefore closer to the target CSG formation) shows a period of decreasing but stabilising groundwater levels from December 2012 to December 2016. Over this period the water level decreased by approximately 3.5 m/year. Throughout 2016 groundwater pressures increased by around a metre and were stable throughout 2017. Within any single year, the groundwater level may vary by up to around 1 m around longer term trends. By the time the sensor comes back online at the end on 2018, the groundwater level trend appears to be stable.

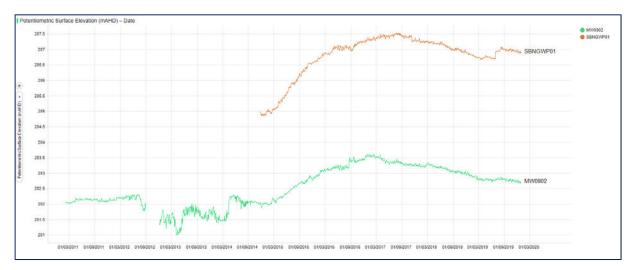


Figure 2-1: Yebna 2 EWS Groundwater Pressure Data at MW0902 and SBNGWP01

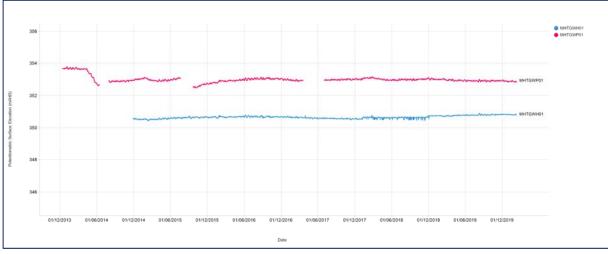


Figure 2-2: Abyss and Lucky Last EWS Groundwater Pressure Data at MHTGWP01 and MHTGWH01

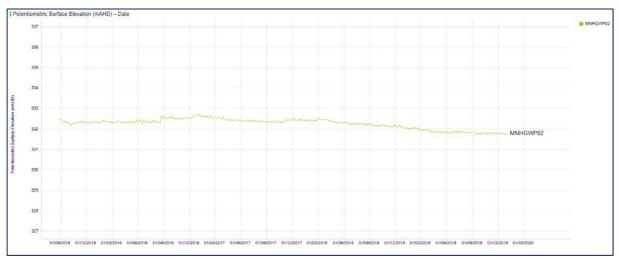


Figure 2-3: Abyss and Lucky Last EWS Groundwater Pressure Data at MNHGWP02

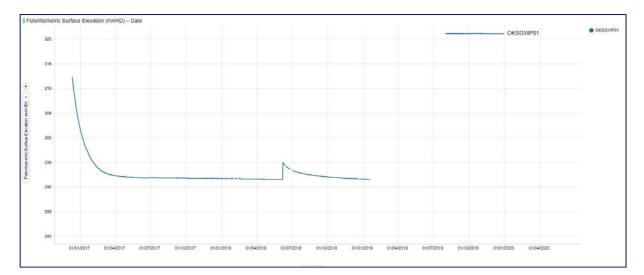


Figure 2-4: Abyss and Lucky Last EWS Groundwater Pressure Data at OKSGWP01

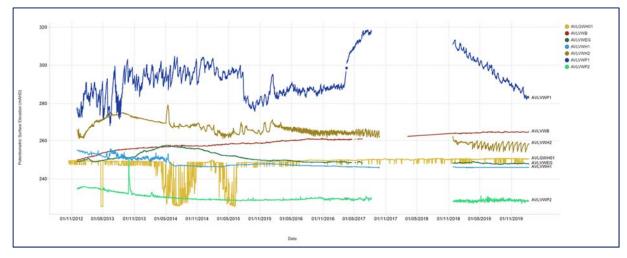


Figure 2-5: Cockatoo Creek Spring Complex EWS Groundwater Pressure Data

4.0 Aquifer Connectivity

4.1 Overview

In accordance with approval conditions Santos GLNG has undertaken its own primary data collection and interpretation related to aquifer connectivity. Santos GLNG has also provided data to various work programs being undertaken by State and Federal Government departments, including the OGIA, Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Office of Water Science.

Santos GLNG activities and results to October 2013 were reported in the Stage 2 CWMMP Rev 2. No major updates have occurred since the submission of the Stage 2 CWMMP Rev 2. The forward work program is outlined in the following sections.

4.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-6 provides an outline of Santos GLNG's commitments presented in the Stage 2 CWMMP Rev 2, specific to aquifer connectivity and progress against each commitment.

Condition	Commitment	Target Completion Date Specified in the Stage 2 CWMMP Rev 2	Status			
49b, 53b, 53d(i)4)	Santos GLNG committed to provide further characterisation on the level of connectivity between the formations. Most of the studies, at this stage, are ongoing and not yet conclusive. Note that the results, where available, will be presented in future updates to the CWMMP.					
	Multi-level monitoring bores.	Ongoing monitoring and data assessment.	Completion of monitoring bores in 2016, ongoing data collection took place in 2016.			
	Contact Zone Program.	Ongoing after installation.	Contact zone monitoring well installed in 2016.			
	Wallumbilla Fault Program.	Installation planned for 2014.	Complete. Additional monitoring data not feasible.			
	Aquifer response to CSG depressurisation.	Ongoing.	Ongoing.			
	Isotope and geochemical signature.	Ongoing.	Ongoing.			
	Pumping response observations and assessments.	Annually from 2014.	Ongoing.			
	The outcomes of the conventional oil and gas well and water bore risk assessment will be presented in an update to the CWMMP.	2014.	Ongoing.			

4.3 Multi-level monitoring

The Santos GLNG monitoring network includes multi-level piezometers and nested singlezone groundwater level monitoring bores. These piezometers target aquifers and specific monitoring zone depths to pre-defined data acquisition objectives. The number of multi-level monitoring locations is summarised in the Table 2-7.

Gas Field	Number of Active, Multi-level Installations or Nested Bore Sites
Roma	22
Fairview	2
Scotia	3

Table 2-7: Number of Active Multi-level Groundwater Level Monitoring Installations

Multi-level monitoring data will continue to be collected, such data are provided to the OGIA.

4.4 Contact Zone near the Fairview Field

Erosion of the Rewan Formation in the south western corner of Fairview prior to deposition of the Precipice Sandstone has resulted in an unconformity where the Precipice Sandstone directly overlies the Bandanna Formation. This area is referred to as a contact zone. The contact zone does not underlie an area that is proposed to be an operational gas field for the Bandanna Formation. The nearest potentially producing gas well in the Bandanna Formation is located approximately 3 km from the contact zone.

Since the initial definition of this study program, the location and extent of the contact zone in Fairview has been reviewed using more recently acquired geological data. This has reduced the size of the contact zone.

Table 2-8: Status of Groundwater Level Monitoring Installations Investigating the Contact Zone	е
in Fairview	

Bore name	Monitored Formation	Status	
VW0902	Precipice Sandstone	Completed	
VW0903	Precipice Sandstone	Completed	
OKSGWP01	Precipice Sandstone	Completed	
"Contact zone"	Hutton Sandstone	Completed - Hutton not present.	
	Precipice Sandstone	Completed	
QWC 129 – Mount Hutton	Hutton Sandstone	Completed	
	Precipice Sandstone	Completed	
Spring Gully – PB1	Hutton Sandstone	Not completed*	

*Proposed bore location is to be delivered by APLNG as it is on their tenure, drilling and completion schedule not known.

The project plan was to investigate the geological stratigraphy and monitor the contact zone through the construction of a number of groundwater monitoring bores as defined in Table 2-8. Two vibrating wire piezometers were installed in 2009 (VWP0902 and VWP0903), and one monitoring bore was installed in 2013 (QWC129, also referred to as MTGWP01 or the Mount Hutton bore). Given the revised location of the contact zone, the Mount Hutton bore,

VW0902 and VW0903 are no longer interpreted to be in the contact zone. The closest monitoring point is VW0902 which is expected to be less than 400 m from the contact zone.

Santos GLNG drilled OKSGWP01 in 2016. The data does not suggest there is not a discernible downward trend in groundwater pressures in the Precipice related to the proximity of the contact zone.

4.5 Hutton-Wallumbilla Fault

The Hutton-Wallumbilla Fault is a complex faulting system. It consists of a main fault to which a number of secondary significant faults are associated. The fault system spreads approximately two kilometres wide. The main fault is not a straight box offset fault type and its characteristics vary along the fault profile. The main fault offset can be made of a number of offsets with varying displacements. The amplitude of the displacement varies from a few metres to the south to about 50 m to the north of the Roma field.

The fracturing and the displacement do not affect the full stratigraphic profile. The main faulting occurred during a compressive phase of mid-Triassic (i.e. sediments of the Bowen Basin). The faults were reactivated during the mid-cretaceous causing minor faulting throughout the secondary sequences or causing folding. Fractures affecting the secondary could also result from differential sediments compaction and as such be tension fractures.

Using the Boxgrove Ironstone Member (a reliable geophysical/seismic marker) at the top of the Boxvale Sandstone, seismic sections show that the formations above the Evergreen Formation are laterally continuous across the fault. Therefore it is now interpreted that the coal beds of the Walloon Coal Measures and all the aquifers above them are continuous across the fault zone.

Beneath the Walloon Coal Measure, the Precipice Sandstone would have been deposited, over the structure prior to the significant displacement and therefore is hydrogeologically a non-continuous structure across the Roma Shelf. The displacement of the Precipice Sandstone appears to be over 50 m, whereas the Precipice Sandstone at this location is not more than 25 m thick. Besides discontinuity, lateral permeability is limited by lithology with the Precipice Sandstone comprising well cemented fine-grained sands, less typical of the highly permeable, coarse sandstone depositions of Precipice Sandstone observed in other areas of the Surat Basin, away from the Roma Shelf.

In terms of its hydraulic properties, the Hutton-Wallumbilla Fault is not necessarily considered to be a barrier to horizontal flow through aquifers that are younger than the Evergreen Formation. Conversely, lateral extent and integrity of lower permeability aquitards layers above the Evergreen Formation are also considered to be continuous, and as such provide a continuous throttle to vertical pressure prorogation and fluid flow. As such, the fault is not expected to play a major role in controlling drawdown resulting from coal seam depressurisation neither vertically (i.e. between formations) and horizontally (i.e. across formations).

A hydrogeochemistry review was undertaken of bore water chemistries around the Hutton-Wallumbilla Fault in the Roma field to understand whether this data might elude to the presence of vertical flow and connectivity pathways between the shallow (above coal) water

bearing formations of the Bungil, Mooga, Orallo and Gubberamunda sandstones. The review concluded that the water chemistry data that had been obtained as part of the regional bore inventory and baseline assessment program did not provide a clear indication of the impact that the Hutton-Wallumbilla Fault may have on vertical and lateral connectivity of shallow aquifers.

4.6 Aquifer Response to Depressurisation

The intention of this program is to continue to monitor aquifer groundwater levels, to periodically review the measured values and to share the data with regulating authorities as they request it.

To date there has been no discernible response to aquifer groundwater levels in aquifers in response to CSG development.

4.7 Isotope and Geochemical Signature

Baseline isotope and geochemistry data will continue to be collected from regional groundwater monitoring bores, as required and stipulated by various regulatory drivers which require it. All data is supplied to the regulating authorities as required.

4.8 Pumping Response to Depressurisation

Measurement of groundwater pressures throughout the life of the project will provide evidence of drawdown effects that may be due to depressurisation of gas bearing formations. The ongoing groundwater pressure monitoring program will include the regional groundwater pressure monitoring as stipulated by the UWIR, as in compliance with the *Water Act 2000* (Qld), and as required by other impact assessments such as spring impact monitoring in accordance with the JIP.

4.9 Support of OGIA Research

Future programs of work will focus on supporting the hydraulic connectivity work programs that are identified and implemented by the OGIA. The findings of these research programs are reported by the OGIA annually and are being carried out in collaboration with CSIRO, Geoscience Australia, universities, other research institutions and petroleum tenure holders.

The OGIA manages and interprets a number of hydraulic connectivity investigations across the Surat CMA. The OGIA directly manages some investigations directly, but is also the principal stakeholder of research being undertaken by others parties such as the Queensland Herbarium, University of Queensland Centre for Coal Seam Gas, Geoscience Australia, the Geological Survey of Queensland, Gas Industry Social and Economic Research Alliance (GISERA), and Queensland University of Technology.

Current research themes that are being considered for inclusion in the next UWIR include groundwater flow modelling, trend analysis, hydrogeological conceptualisation and data management. Specific research topics under each of these themes are developed or advocated by OGIA where they are deemed to improve certainty of model prediction and management outcome. More detail about specific research topic under each of the major

themes is usually provided on OGIA's website, which may be periodically updated as research themes develop.

In addition to specific studies, the OGIA use monitoring data to verify conceptual understanding of hydraulic connectivity. The OGIA reviews the adequacy of the groundwater model at least every year (annual review) for example. Such reviews compare monitoring data with predicted changes to the groundwater regime that have been modelled. This is a statutory role of the OGIA that is required to prepare and maintain a UWIR.

As an example, monitoring data may provide evidence that the location of connecting geological structures such as faults and unconformities that connect two or more hydrogeological units needs to be re-assessed. In this way, the OGIA's evaluation of the monitoring data forms a fundamental process for verifying the degree of hydraulic connectivity that is assumed by the groundwater model now and into the future.

5.0 Managed Aquifer Recharge

5.1 Overview

Managed aquifer recharge (MAR) is the purposeful recharge (or injection) of water to aquifers for subsequent recovery. In the case of the proposed Santos GLNG MAR trial in Roma, the injected water comprises treated coal seam water.

This section provides an update on the water monitoring and management strategies that Santos GLNG proposes to implement for the MAR trial. This reiterates the work that has been completed to date and provides an update to the development schedule that was outlined in the Stage 2 CWMMP Rev 2.

5.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-9 provides an outline of Santos GLNG's commitments presented in the Stage 2 CWMMP Rev 2, specific to MAR and progress against each commitment.

Condition	Commitment	Target Completion Date Specified in the Stage 2 CWMMP Rev 2	Status			
49c, 53a, 53d)ii	Santos GLNG has developed a MAR pilot program and schedule for gas field piloting of aquifer reinjection:					
	Fairview CSG Field Stage 1– Desktop Study.	Completed March 2012.	Completed March 2012.			
	Roma CSG Field Stage 1– Desktop Study.	Completed January 2011.	Completed January 2011.			
	Roma CSG Field Stage 2 – Investigations and Assessment.	Completed January 2011.	Completed January 2011.			
	Roma CSG Field pilot trial (Hermitage) Stage 3 – Construction and Commissioning.	Completed in Q1/Q2 2012.	Completed Q1/Q2 2012.			
	Roma CSG Field pilot trial (Hermitage) Stage 4 – Operation.	Completed Q4 2012.	Completed Q4 2012.			
	Roma CSG Field Trial (The Bend) Stage 3 – Construction and Commissioning.	Due for completion Q3 2014.	Determined as not technically feasible.			
	Roma CSG Field Trial (The Bend) Stage 4 – Operation.	Due to commence Q3/Q4 2014.	Determined to not be technically feasible.			
	Arcadia CSG Field Stage 1 – Desktop Study.	Completed September 2013.	Completed September 2013.			
	All approved Injection Management Plans will be provided in an update to the CWMMP.	Ongoing.	Ongoing.			

5.3 Status of Feasibility and Regulatory Approval

Santos GLNG is assessing the feasibility of implementation of MAR within the Roma field at the location of water treatment and gas compressor station Roma Hub Compressor Station 2 (HCS-02).

MAR in Roma would comprise injection of treated water via a number of injection wells, as few as four and as many as 12 injection wells may be used. The number of wells will depend upon the total volume of water produced by Santos GLNG activities and the injection rate that can be achieved at each well; less the demands for coal seam water from the portfolio of alternative beneficial re-use requirements such as construction, dust suppression and irrigation.

An application to the Queensland Government was sought to amend Environmental Authority (EA) conditions to permit the operation of MAR in the Roma field. This amendment was approved in 2014 following the submission including an Injection Management Plan (IMP) in support of the amendment application.

The IMP adopts a risk management framework consistent with the "National Water Quality Management Strategy, Australian Guidelines for Water Recycling Managing Health and Environmental Risks (Phase 2), Managed Aquifer Recharge". The finalised IMP that was submitted to DEHP on 15 January 2014 was provided in the 2013 CWMMP Annual Report (Santos GLNG, 2014).

MAR is not being pursued as a technically feasible long-term water management solution in Roma.

6.0 Hydraulic Fracturing

6.1 Overview

Hydraulic fracturing is employed in the petroleum industry to improve the production efficiency wells (i.e. more efficient and more economical extraction of gas from the coal seams). Hydraulic fracturing is not carried out on all wells as the process is only necessary at locations with lower permeability.

Hydraulic fracturing is carried out as one of the last activities in the construction of a well and prior to bringing the well into service. It is typically performed on newly drilled and constructed wells after the final well casing pipe has been inserted and the bore annulus cemented and after the casing has been perforated (i.e. the well is opened to access specific coal seams).

Hydraulic fracturing uses a mix of water, sand and minor concentrations of specific additives mixed on the surface and then injected down into the well and then through the perforations into the coal seam. The water and sand typically comprise up to around 99% of the volumes of the hydraulic fracturing fluids, the remainder being specific chemical additives used to disinfect the water, prevent corrosion and adjust the physical properties of the fluid.

The hydraulic fracturing process occurs under varying positive high hydraulic pressures (ranging from approximately 7,000 to 34,500 KPa) in order to open existing fractures in the coal matrix. A proppant (such as sand) is then placed to hold open the fractures. The hydraulic fracturing fluids are injected through the perforations in the steel well casing pipe via wellhead works on the surface and coil-tube pipe down to a device which isolates the coal seam to be fractured.

After completion of the stimulation, the well can be put into production. The initial produced fluids (often referred to "flow-back") largely comprises the water used in the hydraulic fracturing fluid mixture, degraded additives as well as coal seam water and other geo-genic constituents sourced from the target formation.

6.2 Coal Seam Water Monitoring and Management Plan Commitments Table 2-10 provides an outline of Santos GLNG's commitments presented in the Stage 2

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status
49e	Santos GLNG will provide a projection of the anticipated number of wells to be hydraulically stimulated during each year (up to and including 2016) as well as the number of hydraulic stimulations completed in the preceding year. Additional details to be reported will also include location	Annually.	Complete Provided in Table 6.2 of this Annual Report.

CWMMP Rev 2, specific to hydraulic fracturing and progress against conditions.

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status
	information and the depth of each respective hydraulic stimulation.		
49f	 Santos GLNG has agreed with the DAWE to undertake additional Direct Toxicity Assessment that will include: an ecotoxicological program, involving, for example, a comparison of (i) coal seam water, (ii) coal seam water with fraccing chemicals, and (iii) fraccing chemicals in freshwater; assessing the risk of individual fraccing chemicals of concern; and assessing contribution of fraccing fluids and flow-back waters (mixture toxicity). Santos GLNG provided DAWE the joint industry Ecotoxicity Work Program results during 2018. 	December 2013.	Completed Q4 2016.

6.3 Hydraulic Fracturing in 2019

As of December 2019, 121 wells within the Santos GLNG tenures had been hydraulically fractured in 2019. A total of 1427 hydraulic fracturing events/stages were completed within these wells. The location and depth of the hydraulic fracturing stages are presented in Table 2-11.

Well Name	Top of Perforation MD(m)	Bottom of Perforation MD(m)	Latitude (WGS84)	Longitude (WGS84)
AC18-51-1	593.45	651.65	-25.232419	148.882008
AC18-56-1	571.05	648.62	-25.237597	148.871906
AC18-57-1	589.91	652.06	-25.238094	148.878658
AC18-58-1	579.7	658.05	-25.238733	148.885589
AC18-62-1	523.5	618.38	-25.243706	148.867894
AC18-63-1	562.41	662.08	-25.244647	148.878558
AC18-64-1	570.56	646.82	-25.244017	148.887403
AC18-65-1	623.72	704.44	-25.245675	148.899592
AC18-66-1	753.48	797.27	-25.237475	148.900944
AC18-69-1	627.01	706.29	-25.234375	148.889283
AC18-70-1	610.88	694.46	-25.240658	148.897078
AC18-97-6	777.2	877	-25.232253	148.901906
AC18-97-7	777.36	881.6	-25.232294	148.901831
AC18-97-8	644.92	725.49	-25.232336	148.901758
AC21-32-1	514.03	612.71	-25.250519	148.862358
AC21-33-1	560.3	641.39	-25.251531	148.869914
AC21-34-1	569	676.85	-25.252761	148.877478
AC21-35-1	605.02	690.3	-25.249922	148.885075
AC21-36-1	609.39	680.4	-25.248378	148.893383
AC21-37-1	653.4	722.45	-25.251514	148.899233
AC21-39-1	519.71	609.58	-25.255372	148.861503
AC21-40-1	574.54	651.08	-25.255131	148.870561
AC21-42-1	624.8	693.56	-25.257086	148.883181
AC21-43-1	640.4	699.21	-25.255889	148.888694
AC21-45-1	431.82	523.97	-25.261786	148.847039
AC21-46-1	521.59	590.54	-25.259744	148.861178
AC21-47-1	601.5	675.26	-25.259397	148.876233
AC21-48-1	432.5	515.27	-25.267019	148.844797
AC21-49-1	354.45	435.94	-25.275125	148.8363
AC21-50-1	421.02	500.95	-25.272453	148.845011
AC23-31-1	471.49	534.29	-25.3493	148.887533
CASTLE HILL 10	436.36	519.72	-25.3357748	148.8712979
CASTLE HILL 11	507.55	610.33	-25.336661	148.886181
CASTLE HILL 12	479.3	559.57	-25.34135	148.890108
CASTLE HILL 13	317.97	374.73	-25.3408155	148.844471
CASTLE HILL 14 CASTLE HILL 15	358.54 401.69	406.34 451.12	<u>-25.3416649</u> -25.341731	148.851798 148.859072
CASTLE HILL 15	401.09	491.82	-25.3386826	148.8650793
CASTLE HILL 10	419.73	541.9	-25.3432267	148.8831518
CASTLE HILL 18	309.7	354.91	-25.346875	148.843414
CASTLE HILL 19	370.42	417.64	-25.3458313	148.8541464
CASTLE HILL 20	379.42	447.62	-25.346922	148.857653
CASTLE HILL 21	409.58	473.75	-25.345917	148.869092
CASTLE HILL 22	409.50	519.41	-25.3416047	148.8721725
CASTLE HILL 23	376.61	474.45	-25.329364	148.854281
CASTLE HILL 6	419.02	529.71	-25.3314252	148.8660795
CASTLE HILL 7	469.15	585.09	-25.3315193	148.8774276
CASTLE HILL 8	339.33	432.98	-25.334175	148.8508
CASTLE HILL 9	385.68	483.57	-25.335944	148.859364
DOCE HILL 1A	665.59	1379	-25.672103	148.972856
FV08-01-1	1188.1	1266.59	-25.644656	149.131336
FV08-01-3	1184.4	1262.43	-25.644747	149.131472
FV08-11-1	1207.1	1287.86	-25.643206	149.136061
FV11-59-1	544	626.5	-25.684956	148.941753
FV11-74-21	1223	1232.85	-25.681597	148.938411
FV11-76-21	1264.6	1202.00	-25.686242	148.946297
FV11-79-21	1253.2	1268.8	-25.688428	148.951044
FV11-80-21	1303.8	1322.29	-25.699278	148.949967
FV11-80-22	1338.8	1347.54	-25.699206	148.949925
FV11-81-21	1352.6	1373.55	-25.697833	148.953597
FV11-82-21	1310.2	1326.98	-25.702717	148.952942
FV12-57-21	590.15	671.67	-25.727144	149.018419
FV12-90-1	790.1	803.34	-25.675981	149.052028
FV12-30-1 FV17-19-2	734.7	1062.1	-25.788569	149.055522

Table 2-11: Hydraulic Fracturing Locations and Perforation Details Completed in 2019

Well Name	Top of Perforation MD(m)	Bottom of Perforation MD(m)	Latitude (WGS84)	Longitude (WGS84)
MOUNT KINGSLEY 11	619.2	689.15	-25.2862222	148.8788778
MOUNT KINGSLEY 20	606	678.88	-25.265306	148.874589
MOUNT KINGSLEY 21	607.7	671.26	-25.272358	148.873289
MOUNT KINGSLEY 22	613.9	672.72	-25.278241	148.874488
MOUNT KINGSLEY 23	639.4	706.71	-25.280131	148.882528
MOUNT KINGSLEY 24	650.9	727.22	-25.28585	148.885833
MOUNT KINGSLEY 25	644.3	702.2	-25.266192	148.882228
MOUNT KINGSLEY 26	638.1	709	-25.273636	148.882228
MOUNT KINGSLEY 27	695.1	753.65	-25.273958	148.890844
MOUNT KINGSLEY 28	707.6	768.5	-25.280164	148.891292
MOUNT KINGSLEY 29	703.55	768.29	-25.285978	148.891839
MOUNT KINGSLEY 30	626	695.18	-25.259967	148.882681
MOUNT KINGSLEY 31	678	738.75	-25.26675	148.892689
MOUNT KINGSLEY 32	738	801.6	-25.273587	148.897162
MOUNT KINGSLEY 33	658.7	721.8	-25.25778	148.894441
MOUNT KINGSLEY 34	682.8	741.88	-25.258358	148.899019
MOUNT KINGSLEY 35	749.4	807.84	-25.265475	148.899453
RM40-143-1	719.18	1010.82	-26.569331	149.405714
RM40-144-1	736.6	1020.98	-26.5699	149.4093083
RM40-145-1	713.97	974.64	-26.571989	149.401678
RM40-147-1	732.44	1025.3	-26.573011	149.408661
RM40-150-1	719.43	1011.58	-26.575597	149.405058
RM40-152-1	751	1048.66	-26.576522	149.411628
SUNNYHOLT 15	595.3	678.04	-25.293467	148.875928
SUNNYHOLT 17	597.5	659.4	-25.302378	148.874211
SUNNYHOLT 18	507.2	580.96	-25.311728	148.862406
SUNNYHOLT 19	460.7	547.64	-25.317044	148.859222
SUNNYHOLT 21	410.7	489.56	-25.314431	148.850561
SUNNYHOLT 25	426	529.03	-25.322661	148.8607
SUNNYHOLT 26	520.8	572.8	-25.315711	148.867167
SUNNYHOLT 27	566.5	642.72	-25.310889	148.873797
SUNNYHOLT 28	626.6	710.49	-25.299969	148.880317
SUNNYHOLT 29	641.2	718	-25.293756	148.882456
SUNNYHOLT 30	477.3	579.19	-25.322144	148.866908
SUNNYHOLT 31	536.2	607.1	-25.318889	148.875022
SUNNYHOLT 32	590	671.04	-25.313183	148.880892
SUNNYHOLT 33	614.85	690.95	-25.306914	148.884606
SUNNYHOLT 34	621.09	697.21	-25.302203	148.892208
SUNNYHOLT 35	664.42	748.3	-25.293811	148.890636
SUNNYHOLT 36	482.9	574.45	-25.325075	148.873319
SUNNYHOLT 37	521.4	623.31	-25.323511	148.879994
SUNNYHOLT 38	555.4	629	-25.319103	148.884564
SUNNYHOLT 39	585.6	640.02	-25.313967	<u>148.887314</u> 148.892667
SUNNYHOLT 40 SUNNYHOLT 41	<u>582.1</u> 655.15	<u>666.48</u> 734.78	-25.307836 -25.301908	148.892667
SUNNYHOLT 41 SUNNYHOLT 42	679.73	734.78	-25.301908 -25.2937	148.900436
SUNNYHOLT 42	505	609.4	-25.323675	148.887983
SUNNYHOLT 43	503.1	599.51	-25.323075	148.893583
SUNNYHOLT 45	497.2	555.59	-25.327214	148.89265
SUNNYHOLT 46	549.5	618.46	-25.323047	148.904719
SUNNYHOLT 47	548.4	631.96	-25.316097	148.902033
SUNNYHOLT 48	646	707.67	-25.307858	148.902847
SUNNYHOLT 7	508.6	554.43	-25.323956	148.899292
TINOWON 2	2347.1	2455.25	-26.944472	140.099292
WARRINILLA 9	502.158	600.659	-25.003858	148.572481
		000.000	20.000000	170.012701
WYENA 2	718.2	1050.51	-26.527572	149.452953

mbgl – metres below ground level

6.4 Direct Toxicity Assessment

As detailed in the Stage 2 CWMMP Rev 2, Santos GLNG committed to undertake additional Direct Toxicity Assessments as part of the joint Industry Working Group (IWG) CSG Fracturing Fluid Ecotoxicology Work Plan (Hydrobiology, June 2013). The Ecotoxicology Work Plan, prepared by Hydrobiology and approved by the former Department of Sustainability, Environment, Water, Population and Communities (now DAWE) and the Expert Panel for major coal seam gas projects, was developed to assess the incremental toxicity of fracturing fluids in the context of the natural ecotoxicity of coal seam gas water to surface water organisms.

The direct toxicity assessment for various waters and fluids commenced in December 2015, this involves testing representative coal seam waters from wells to be fractured and testing the hydraulic fracturing fluid and coal seam water as formulated for injection. The assessment report was provided to DAWE in 2018.

7.0 Surface Water Monitoring

7.1 Overview

The Fairview and Arcadia Valley fields are located within the Fitzroy Basin, whilst the Roma field is located in Condamine – Balonne Catchment. The main water systems within the Fairview field are the Dawson River and its tributaries Baffle Creek and Hutton Creek. There are five creeks running through the Roma field which drain south to the Balonne River, including Dargal Creek, Bungil Creek, Blyth Creek, Wallumbilla Creek, and Yuleba Creek. All watercourses are highly ephemeral. The Arcadia Valley field lies within both the Comet River and Dawson River catchments, where the surface water network is largely limited to ephemeral streams except the Upper Dawson which is weekly perennial.

Santos GLNG has established surface water monitoring programs for springs, treated coal seam water discharge points and ephemeral streams.

7.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-12 provides an outline of the commitments made in the Stage 2 CWMMP Rev 2, specific to surface water monitoring and progress against each commitment.

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status
49.g.vi)	Surface Water Threshold Values		
	Collection and reviewing 2 years of baseline data and development of upper and lower confidence levels (Threshold values) for key parameters (relevant to MNES).	End of 2014.	Completed.

Table 2-12: Stage 2 CWMMP Rev 2 Commitments – Surface Water Monitoring

7.3 Surface Water Threshold Values

As summarised is Section 2, baseline threshold values for surface water have been established. This is reported in "Baseline Threshold Values for Surface Water Quality in Fairview and Roma Project Areas", dated February 2015. These threshold values will be reported in the next update to the CWMMP.

8.0 Brine Management

8.1 Overview

Brine is defined as the concentrated reverse osmosis waste stream (RO concentrate). Once RO concentrate reaches above 40,000 mg/L total dissolved solids (TDS), it is then defined by DES as 'brine'. Santos GLNG has the following mechanisms currently in place for RO concentrate management:

- + **Fairview field:** Santos GLNG stores and manages RO concentrate production in brine containment ponds.
- + **Roma field:** Santos GLNG stores and manages RO concentrate production in brine containment ponds.
- + **Arcadia Valley field:** No RO concentrate will be produced in Arcadia Valley field within the scope of the Santos GLNG Stage 2 CWMMP Rev 2.

Further brine management options or expansion of current options may be required as gas fields develop, Santos GLNG is currently assessing options for the long-term management of brine and solid salt.

8.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-13 provides an outline of Santos GLNG's commitments presented in the Stage 2 CWMMP Rev 2, specific to brine management and progress against each commitment.

Condition	Commitment	Target Completio Date Specified in Stage 2 CWMMP 2	
49.g.x)	Brine Management Plans		-
49.y.x)	Provision of Brine Management Plans developed for Arcadia Valley, Roma and Fairview gas fields as a state government requirement within the respective gas field's EA's. These will be provided in an update to the CWMMP.	December 2014.	March 2020 Due to an extension granted by the state government (DES) for provision of Brine Management Plans to December 2019.

 Table 2-13: Stage 2 CWMMP Rev 2 Commitments – Brine Management

8.3 Brine Management Progress

Since the 2014 CWMMP Annual Report there continues a significant reduction in water volumes (approximately 30%-50%) then originally predicted in the CWMMP Rev 2, for the Roma and Fairview gas fields. This has therefore significantly reduced estimated brine production volumes.

During 2019, the focus on brine management studies included maximising beneficial use options for coal seam water that meets relevant standards, understanding and capitalising on these opportunities as priority will minimise brine and solid salt production.

The outcomes of brine and salt management feasibility assessments are ongoing; however, based on current sanctioned Development Projects, Santos GLNG has constructed sufficient storage capacity in the Fairview field for brine management for the project life.

Extension was previously granted by the state government (DEHP) for provision of Brine Management Plans for Roma field and Fairview and Arcadia Valley fields by December 2019.

9.0 Subsidence

9.1 Overview

Pressure reductions in the subsurface due to coal seam water production have the potential to cause subsidence within the coal seam and a risk of deformation at the ground surface. Santos GLNG is required by EPBC Act Approval Condition 65 to undertake:

- baseline and ongoing geodetic monitoring programs to quantify deformation at the land surface within the proponent's tenures. This should link from the tenement scale to the wider region across which groundwater extraction activities are occurring as well as to any relevant regional program of monitoring;
- + modelling to estimate the potential hydrological implications of the predicted surface and subsurface deformation; and
- + methods for linking surface and sub-surface deformation arising from CSG activities.
- + Santos GLNG has developed a Subsidence Management Plan which defines the process for identifying a reportable subsidence occurrence. The Subsidence Management Plan was provided as an appendix to the Santos GLNG Stage 2 CWMMP Rev 2.

Santos GLNG is using InSAR (interferometric synthetic aperture radar) technology to detect ground movement and deformation across the entire extent of its fields.

9.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-14 provides an outline of Santos GLNG's commitments presented in the Stage 2 CWMMP Rev 2, specific to subsidence monitoring and progress against each commitment.

Condition	Commitment	Target Completion Date Specified in the Stage 2 CWMMP Rev 2	Status
53.d.i.III	Subsidence		
	The Subsidence Management Plan provides a response plan into any exceedance of the defined subsidence trigger. The Subsidence Management Plan describes the monitoring undertaken to establish variation of ground level over time.	Completed.	Completed.
	Subsidence baseline.	Completed.	Completed.
	Monitoring through satellite measurements.	Ongoing.	Ongoing.

Table 2-14: Stage 2 CWMMP Rev 2 Commitments – Subsidence

9.3 Findings to Date

Stage 1 of the monitoring program comprised collection and interpretation of baseline ground motion conditions across the Surat and Bowen basins where gas field development activity is expected to occur at some point in the future. The findings were used to inform the Subsidence Management Plan.

Stage 2 of the InSAR monitoring program commenced in July 2012. An Interim report on the Stage 2 InSAR monitoring program was submitted to the DAWE in November 2013 as per the commitment made in the Stage 2 CWMMP Rev 2 and described the interim findings of Stage 2 of the monitoring program. Stage 2 was completed in April 2015.

Stage 3 of the InSAR monitoring program commenced in April 2015. The first interim report for Stage 3 was provided to Santos in April 2016. Stage 3 occurred until February 2018. The next stage of monitoring was commissioned in 2017 provide continuous ground motion monitoring beyond February 2018.

Stage 4 of the InSAR monitoring program commenced in January 2018. The first interim report for Stage 3 was provided to Santos in June 2018, and the second in January 2019. Stage 4 is scheduled to continue until 2020.

To date, the results show a stable pattern over time for the whole Santos GLNG tenures. No direct correlation between ground deformation and exact locations of the gas activities is evident. The localised displacements measured over the Santos GLNG fields (accumulated values of up to 20 mm) are likely due to superficial processes. Such processes might include natural processes such as erosion, sediment deposition, and soil wetting/drying, as well as anthropogenic activity such as agricultural activities.

9.4 Ongoing Studies and Monitoring

InSAR image data acquisition will continue throughout the life of the project, as to committed in the Stage 2 CWMMP.

10.0 Reporting

10.1 Overview

This section will outline the reporting commitments made in the Stage 2 CWMMP Rev 2 and report on progress against each item.

10.2 Coal Seam Water Monitoring and Management Plan Commitments

Table 2-15 provides an outline of Santos GLNG's commitments presented in the Stage 2 CWMMP Rev 2, specific to reporting and progress against each commitment.

Condition	Commitment	Target Completion Date Specified in Stage 2 CWMMP Rev 2	Status
49i, 53c)ix)	Reporting		
	A Coal Seam Water Monitoring and Management Annual Report will be developed for each calendar year and submitted to DAWE within the first quarter of the following year.	Annually.	Complete.
	Digital data can be provided to DAWE on request.	Ongoing.	Ongoing.
	Santos GLNG will publish the following reports on the internet (via the Santos Water Portal): Coal Seam Water Monitoring and	Annually	Complete.
	 Management Annual Report; Link to the latest Surat Cumulative Management Area (CMA); and Underground Water Impact Report (UWIR). 		
	Santos GLNG will regularly publish data from the water monitoring network on the Santos Water Portal.	Ongoing.	Ongoing (last updated December 2019)
55	The next revision of the CWMMP is currently planned to be submitted to the DAWE 3 months prior to the first LNG cargo.	Report to be submitted 3 months prior to first LNG cargo	In progress.

Table 2-15: Stage 2 CWMMP Rev 2 Commitments – Reporting

10.3 2019 Reporting

10.3.1 CWMMP Annual Report

The first Annual Report was submitted to the DAWE on 31 March 2014. The 2013 Annual Report included progress updates from October 2013 to December 2013 which incorporated the 2013 period since submission of Stage 2 CWMMP Rev 2. The 2014 to 2018 Annual Reports were previously submitted and reported on progress during 2014, 2015, 2016, 2017 and 2018 respectively.

This 2019 Annual Report has been developed to provide progress against commitments from 1 January 2019 to 31 December 2019 and will be made available on the Santos Water Portal as required by Conditions 49 and 53 of the EPBC approval by the 31 March 2019.

10.3.2 Digital Data Requests

No digital data was requested by the DAWE during this reporting period.

10.3.3 Santos Water Portal

Updates to the water monitoring network were published on the Santos Water Portal, this included updated water level and water quality results for a range of groundwater bores and surface water monitoring locations. These were most recently updated in December 2019.

The Santos Water Portal can be accessed via http://www.santoswaterportal.com.au/.

10.3.4 Future Reporting

The forward work plan to meet reporting commitments is outlined below:

- + Provision of digital data to the DAWE upon request;
- + Updates to water monitoring network and data on the Santos Water Portal on a quarterly basis;
- + Commencement of the Annual Report 2019 covering January 2019 to December 2019.

11.0 References

Department of the Environment, 2013, *Letter of Approval of Stage 2 CSG Water Management and Monitoring Plan - Reference: MS13-000959*

Hydrobiology Pty Ltd, 2013, CSG Fraccing Fluid Ecotoxicology Work Plan June 2013

Jacobs Engineering Group Inc. (Jacobs) 2015, *Surat Basin Quarterly Spring Baseline Monitoring Program: Springs Baseline Summary Report*, Report no. IH037400.

Klohn Crippen Berger (KCB) 2012, *Desktop Assessment of the Source Aquifer for Springs in the Surat Cumulative Management Area*, Brisbane.

Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, National Health and Medical Research Council, 2009, National Water Quality Management Strategy, *Australian Guidelines for Water Recycling Managing Health and Environmental Risks* (Phase 2), Managed Aquifer Recharge.

Office of Groundwater Impact Assessment, 2012, Underground Water Impact Report for the Surat Cumulative Management Area.

Office of Groundwater Impact Assessment, 2016, Underground Water Impact Report for the Surat Cumulative Management Area.

Office of Groundwater Impact Assessment, 2019, Underground Water Impact Report for the Surat Cumulative Management Area.

Origin, 2018. 2017-2018 Groundwater Assessment Report

Queensland Herbarium 2012, *Ecological and Botanical Survey of Springs in the Surat Cumulative Management Area,* Brisbane.

Queensland Water Commission, 2012, Underground Water Impact Report for the Surat Cumulative Management Area.

Santos GLNG, 2013, Joint Industry Plan for an Early Warning System for the Monitoring and Protection of EPBC Springs.

Santos GLNG, 2013, Stage 2 Revision 2 CSG Water Management and Monitoring Plan.

Santos GLNG, 2014, Santos GLNG Coal Seam Water Monitoring and Management Annual Report.

Santos GLNG, 2015, Santos GLNG Coal Seam Water Monitoring and Management Annual Report.

Santos GLNG, 2016, Santos GLNG Coal Seam Water Monitoring and Management Annual Report.

Santos GLNG, 2017, Santos GLNG Coal Seam Water Monitoring and Management Annual Report.

Santos GLNG, 2018, Santos GLNG Coal Seam Water Monitoring and Management Annual Report.

URS 2015, *Baseline Threshold Values for Surface Water Quality in Fairview and Roma Project Areas*, Report no. 42627494/R001/0.

Santos Ltd | CWMMP Annual Report 2019 | 31 March 2020